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Auctions: Definition
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• There’s a lot more to auctions than the classic “going…
going… gone!” mechanism that first jumps to mind

• An auction is any negotiation mechanism that is:
– Mediated

• impartial auctioneer
– Well-specified

• runs according to explicit rules
– Market-based 

• determines an exchange in terms of standard currency



Auctioneer
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• Receives Bids
• Disseminates Information
• Arranges trades (clear market)

auctioneer
trader

trader

trader trader

trader



Auction Dimensions
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Bidding rules

Clearing policy

Information revelation policy



Bidding Rules
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• Who can bid, when
• What is form of bid
• Restrictions on offers, as a function of

– Trader’s own previous bid
– Auction state (everyone’s bids)
– Eligibility (e.g., financial)
– …

• Expiration, withdrawal, replacement



Information Revelation
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• When to reveal information
• What information
• To whom

Open outcrySealed bid



Clearing Policy
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• Clear: Translates offers into agreed trades, according to 
specified rules.

• Policy choices:
– When to clear:

• at specified intervals
• on each bid
• on inactivity

– Who gets what (allocation)
– At what prices (payment)
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Single-dimensional auctions
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1. one sided
1.1 English
1.2 Dutch
1.3 Japanese
1.4 Sealed bid

2.  two sided
2.1 Continuous double auction (CDA)
2.2 Call market (periodic clear)



Single-unit English auction
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• Bidders call ascending prices

• Auction ends:
– at a fixed time
– when no more bids
– a combination of these

• Highest bidder pays his bid



Multi-unit English auctions
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• Different pricing schemes
– lowest accepted (uniform pricing, sometimes called “Dutch”)
– highest rejected (uniform pricing, GVA)
– pay-your-bid (discriminatory pricing)

• Different tie-breaking rules
– quantity
– time bid was placed

• Different restrictions on partial quantities
– allocate smaller quantities at same price-per-unit
– all-or-nothing

• finding the winners is NP-Hard: weighted knapsack problem



Dutch (“descending clock”) auction
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• Auctioneer calls out descending prices
• First bidder to jump in gets the good at that price

• With multiple units: bidders shout out a quantity rather 
than “mine”. The clock can continue to drop, or reset to 
any value.



Japanese auction
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• Auctioneer calls out ascending prices
• Bidders are initially “in”, and drop out (irrevocably) at 

certain prices
• Last guy standing gets it at that price

• Multi-unit version: bidders call out quantities rather than 
simple “in” or “out”, and the quantities decrease between 
rounds. Auction ends when supply meets or exceeds 
demand. (Note: what happens if exceeds?)



Sealed bid auctions
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• Each bidder submits a sealed bid
• (Usually) highest bid wins
• Price is

– first price
– second price
– k’th price

• Note: Can still reveal interesting information during auction
• In multiple units: similar pricing options as in English



Reverse (procurement) auctions
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• English descending
• Dutch ascending
• Japanese descending



Two-sided (double) auctions
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• Continuous double auction (CDA)
– every new order is matched immediately if possible
– otherwise, or remainder, is put on the order book
– NASDAQ-like

• Call (“periodic clear”) market
– orders are matched periodically
– Arizona stock exchange (AZX) -like



Intuitive comparison of the basic four auctions
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 English Dutch Japanese Sealed Bid 

Regret no yes no 1st: yes 
2nd: no 

Duration #bidders, 
increment 

starting 
price, clock 
speed 

#bidders, 
increment 

fixed 

Information 
Revealed 

2nd-highest val; 
bounds on 
others 

winner’s bid all val’s but 
winner’s 

none 

Jump bids yes n/a no n/a 

Price 
Discovery 

yes no yes no 

 

What about agents’ strategies in each auction type?
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Static Games in Strategic Form
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• A (two-player) game in strategic form is a tuple <S1, S2, U1, 
U2> where S1 is a set of strategies available to player i, and 
Ui: S1×S2→R is a utility/payoff function for player i. 

• Usually depicted through a payoff matrix



Examples of game in strategic form
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1,1 3,0

2,20,3
• Prisoners’ Dilemma (PD)

• The coordination game

• Matching pennies

1,1 0,0

1,10,0

1,-1 -1,1

-1,1 1,-1



A solution concept: the Nash equilibrium
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• A pair of strategies (s,t) is a Nash equilibrium if 
∀(s'∈ S1, t'∈ S2), U1(s', t) ≤ U1(s, t), U2(s, t') ≤ U2(s, t)

1,1 3,0

2,20,3

1,1 0,0

1,10,0

1,-1 -1,1

1,-1-1,1



Strategy Types
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• Dominant Strategy
– Best to do no matter what others do
– e.g., prisoner’s dilemma

• Mixed Strategy
– Mixed strategies of player i: probability distributions on Si.
– Nash equilibrium is easily generalized to mixed strategies

• rather than look at payoff, look at expected payoff. 
– Thm. There always exists a Nash equilibrium in mixed strategies. 

The result holds also for the case of n players.



Auctions as games, unsuccessful attempt
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• Consider a 1st-price auction
– N bidders, valuations vi> v2>…> vn

• Unsuccessful game-theoretic model:
– Strategies: the bids bi

– Payoffs: vi – bi for winner, zero otherwise
– In all equilibria the agent with v1 wins; there are many such 

equilibria
– BUT: this implicitly assumes that the valuations are common 

knowledge (that is, the game is known). 
• then what’s the point of having an auction?



Uncertainty: Bayesian Games
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• Represent games in which agents have partial information 
about one another

• Bayesian games add this ingredient in one of two 
equivalent ways:
– Posit a set of games, with each player having a belief (probability) 

about which is being played
– Posit a single game with an added player, Nature, with each player 

receiving some signal about Nature’s move.

• Bayes-Nash equilibrium is a generalization of Nash 
equilibrium to this setting. 



Auction as a Bayesian game
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• Players: bidders + Nature
• Nature chooses valuations for each agent
• Each agent’s signal is his own valuation.
• Agent’s strategy: mapping from valuation to bidding 

strategy



Agents care about utility, not valuation
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• Actions are really lotteries, so you must compare expected 
utility rather than utility.

• Risk attitude speak about the shape of the utility function
– linear/concave/convex utility function refers to risk-neutrality/risk-

aversion/risk-seeking, respectively.

• The types of utility functions, and the associated risk 
attitudes of agents, are among the most important concepts 
in Bayesian games, and in particular in auctions. Most 
theoretical results about auction are sensitive to the risk 
attitude of the bidders.
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Two yardsticks for good auction design
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• Revenue: The seller should extract the highest possible price

• Efficiency: The buyer with the highest valuation should get 
the good
– usually achieved by ensuring “incentive compatibility”: bidders are 

induced to bid their true valuation
– maximizing over those bids ensures efficiency.

• The two are sometimes but not always aligned



Direct mechanisms and incentive compatibility
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• In a direct mechanism you simply announce your valuation
• The auction is incentive compatible if it’s in your best 

interest not to lie about your true valuation
• Example: 2nd price (“Vickrey”) auction
• Another example: the generalized Vickrey auction (GVA)



The revelation principle
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• You can transform any auction into an “equivalent” one 
which is direct and incentive compatible

• “Rather than lie, the mechanism will lie for you”
• Example: Assume two bidders, with valuations drawn 

uniformly from a fixed interval (plus other assumptions). 
The optimal strategy is to bid 1/2 your true value. But if the 
rule is changed so that the winner only pays half his bid, it 
is optimal to bid your true value. 



Independent Private Value (IPV)
versus Common Value (CV)
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• In a CV model agents’ valuations are correlated. 
– the revelation of information during the auction plays a 

significant role 

• In the IPV model they are independent. 



Connections
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• Dutch = 1st-price sealed bid

• English ~ Japanese

• English = 2nd-price sealed bid under IPV



The Revenue Equivalence Theorem
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• In all auctions for k units with the following properties
– Buyers are risk neutral
– IPV, with values independently and identically distributed over [a,b] 

(technicality – distribution must be atomless)
– Each bidder demands at most 1 unit
– Auction allocates the units to the k highest bids
– The bidder with the lowest valuation has a surplus of 0

• a buyer with a given valuation will will make the same expected 
payment, and therefore

• all such auctions have the same expected revenue
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What are combinatorial auctions (CAs)
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• Multiple goods are auctioned simultaneously 
• Each bid may claim any combination of goods
• A typical combination: a bundle (“I bid $100 for the TV, 

VCR and couch”)
• More complex combinations are possible



Motivation: complementarity and substitutability
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• Complementary goods have a superadditive utility function:
– V({a,b}) > V({a}) + V({b})
– In the extreme, V({a,b}) >>0 but V({a}) = V({b}) = 0
– Example: different segments of a flight

• Substitutable goods have a subadditive utility function:
– V({a,b}) < V({a}) + V({b})
– In the extreme, V({a,b}) = MAX[ V({a}) , V({b}) ]
– Examples: a United ticket and a Delta ticket



Unstructured bidding is impractical
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• Bidder sends his entire valuation function (over all possible 
allocations) to auctioneer.
– Problem: Exponential size

• Bidder sends his valuation as a computer program (applet)
– Problem: requires exponential access by any auctioneer algorithm



Often, valuations have structure
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• “Classic”:
– (take-off right) AND (landing right)
– (frequency A) XOR (frequency B) 

• Online Computational resources:
– Links: ((a--b) AND (b--c)) XOR ((a--d) AND (d--c))
– (disk size > 10G) AND (speed >1M/sec)

• E-commerce:
– chair AND sofa -- of matching colors
– (machine A for 2 hours) AND (machine B for 1 hour)



Bidding Language Requirements
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• Expressiveness
– Must be expressive enough to represent every possible valuation.
– Representation should not be too long

• Simplicity
– Easy for humans to understand
– Easy for auctioneer algorithms to handle



AND, OR, and XOR bids
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• {left-sock, right-sock}:10

• {blue-shirt}:8   XOR  {red-shirt}:7

• {stamp-A}:6   OR  {stamp-B}:8



General OR bids and XOR bids
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• {a,b}:7  OR {d,e}:8  OR {a,c}:4
– {a}=0,  {a, b}=7, {a, c}=4, {a, b, c}=7, {a, b, d, e}=15
– Can only express valuations with no substitutabilities.

• {a,b}:7  XOR {d,e}:8  XOR {a,c}:4
– {a}=0,  {a, b}=7, {a, c}=4, {a, b, c}=7, {a, b, d, e}=8
– Can express any valuation
– Requires exponential size to represent 

{a}:1  OR  {b}:1  OR  … OR  {z}:1



OR of XORs example
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{couch}:7   XOR  {chair}:5
OR

{TV, VCR}:8   XOR   {Book}:3



Relative expressive power of different formats
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• OR bids can represent valuations without substitutabilities
• XOR bids can represent all valuations
• Additive valuations can be represented linearly with OR bids, 

but only exponentially with XOR bids



The expressive power of ‘dummy’ goods
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• Transform “$10 for a XOR (b and c)” into two bids: “$10 for 
a and x” and “$10 for b, c and x”; x is the dummy good. 
– The idea: any decent CA will never grant the two bids 

• With dummy goods, OR can represent any function
• How many dummy goods are needed?

– In the worst case, exponentially many
• Example: the Majority valuation

– OR-of-XORs: s, where s is the number of atomic bids in the input
– XOR-of-ORs: s2



Auction theory applied to CA’s
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• We’ve examined the technical issues behind how agents 
will bid

• However, what will they bid?
• How can we change the CA mechanism to influence 

agents’ strategic behavior?

• Most naïve CA mechanism:
– agents submit bids for bundles
– auctioneer computes revenue-maximizing allocation
– bidders pay the amounts of their bids



The Naïve CA is not incentive compatible
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• Naïve CA: Given a set of bids on bundles, auctioneer finds a 
subset containing non-conflicting bids that maximizes revenue, 
and charges each winning bidder his bid

• This is not incentive compatible, and thus not (economically) 
efficient

• Example: 
– v1(x,y)=200, v1(x,¬y)=v1(¬x,y)=0
– v1(x,y)=100, v2(x, ¬y)=v2(¬x,y)=75
– Bidder 1 has incentive to “lie” and bid less

• in this example he would win with a bid of $101
– If bidder 2 lies then bidder 1 has an incentive to lie even more



Lessons from the single dimensional case
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• 1st-price sealed bid auction is not incentive compatible (in 
equilibrium, it pays to “shave” a bit off your true value)

• 2nd-price sealed bid (“Vickrey”) auction is incentive 
compatible

• Can we pull off the same trick here?



The Generalized Vickrey Auction (GVA)*
is incentive compatible
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• The Generalized Vickrey Auction charges each bidder their 
social cost

• Example:
– Red bids 10 for {a}, Green bids 19 for {a,b}, Blue bids 8 for {b}
– Naïve: Green gets {a,b} and pays 19
– GVA: Green gets {a,b} and pays 18 (10 due to Red, 8 due to Blue)

* aka the Vickrey-Clarke-Groves (VCG) mechanism



Formal definition of GVA
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• Each i reports a utility function        possibly different from 
• The center calculates         which maximizes sum of   s
• The center calculates         which maximizes sum of   s without i
• Agent i receives         and also a payment of 

• Thus agent i’s utility is
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Other remarks about GVA
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• Applies not only to auctions as we know them, but to 
general resources allocation problems
– When “externalities” exist
– E.g, with public goods

• Cannot simultaneously guarantee
– Participation
– Incentive compatibility
– Budget balance

• Not collusion-proof
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The optimization problem of CAs
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• “Given a set of bids on bundles, find a subset containing 
non-conflicting bids that maximizes revenue”

• Performed once by the naïve method, n+1 times by GVA
• Requires exponential time in the number of goods and bids 

(assuming they are polynomially related)

g1 g2 g3 g4 g5

b1
$7

b2
$8

b3
$6



What’s known about the problem?
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• Weighted set packing: NP-Hard
• Uniform approximation is equally hard
• Best known polynomial approx. bound is       ,  k is # goods
• Approaches

– Incomplete heuristic methods
• however, GVA not incentive compatible if we use these

– Complete algorithms
• tractable special cases
• complete heuristic methods

• How to test these algorithms? The need for a test suite

k/1



Weighted Set Packing as an Integer Program
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• n items -- indexed by i (some may be dummies)

• m atomic bids: (Sj,pj) (maybe multiple ones from same bidder)

• Goal: optimize social efficiency

• Problem: IP is hard
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Linear Programming Relaxation of the IP
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• Good news: LP is easy
• Bad news: “fractional” allocations

– xj specifies what fraction of bid j is obtained.

• If we’re lucky, the solution will be integer anyway



When do we get lucky?
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• Tree structured bundles:

• Continguous single-dimensional goods (“consecutive ones”); 
e.g., time intervals

• Bundles of size at most 2
• A general condition: Total Unimodular (TU) matrices

a b c d e f g

a b c

a b

d e f g

e f gdc



State of the art
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• Recent years have seen an explosion of specialized search 
algorithms for CAs

• Complete methods guarantee optimal results, but not quick 
convergence. On test cases the algorithms scale to about 
100 goods and 10000’s of bids. 

• Incomplete, greedy-search methods sometimes perform an 
order of magnitude faster

• Very recent results on the multi-unit case
• CPLEX 7.0 holding its own…
• A major challenge: testing the algorithms (CATS)



Hard problems: Summary
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• Multi-unit English Auction
– weighted knapsack problem

• Single-unit combinatorial auctions
– weighted set packing problem

• Combinatorial auctions for procurement
– weighted set cover problem instead of set packing

• Multi-unit combinatorial auctions
• GVA: solve one of the above problems n+1 times

– where n is the number of winners
– note: the n+1 problems are closely related
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Testing CA’s: Past Work
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1. Experiments with human subjects
– good for understanding how real people bid;

less good for examining computational characteristics
– valuation functions hand-crafted 
– untrained human subjects may be overwhelmed by large problems

2. Analysis of particular problems to which 
CA’s are well-suited

– generally propose alternate (restricted) mechanisms
– useful for learning about problem domains



3. Artificial Distributions
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• Advantage: easy to generate any number of datasets parameterized by 
the desired number of bids, goods

• Disadvantages: don’t explicitly model bidders; 
lack a real-world economic motivation
– all bundles requesting same number of goods are equally likely

– price offers are unrelated to which goods requested

– price offers usually not superadditive in number of goods

– no meaningful way to construct sets of substitutable bids



Combinatorial Auction 
Test Suite (CATS)
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• Our goal: create a test suite for the combinatorial auction winner 
determination problem that will be of use to other researchers
– a collaborative effort with CA community

• Start with a domain, basic bidder preferences
• Derive an economic motivation for:

– goods in bundle
– valuation* of a bundle

* we assume incentive compatibility
– what bundles form sets of substitutable bids



CATS Distributions
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• Test distributions motivated by real-world problems, where 
complementarity arises from:
1. Paths in space
2. Proximity in space
3. Arbitrary relationships
4. Temporal Separation (matching)
5. Temporal Adjacency (scheduling)



Paths in Space
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• Real-world domains:
– railroad network
– truck shipping, network bandwidth allocation, natural gas pipeline

• e.g., see Brewer & Plott, 1996; Sandholm 1993; Rassenti et. al. 1994

• Problem:
– goods are edges in a graph
– bidder: acquire a path from a to b by buying a set of edges

• Procedure:
– generate a random graph

• why not use a real railroad (etc.) map? Scaling the number of goods.
– generate bids for each bidder



Sample Graph
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Proximity in Space
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• Real-world domain: real estate
– e.g., see Quan, 1994.

• Problem:
– goods are nodes in a graph
– edges indicate adjacency between goods
– bidder: buy a set of adjacent nodes

• according to common and private values



Sample Graph
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Arbitrary Relationships

June 16, 2001 Cornell Workshop 69

• Some goods do not give rise to a notion of adjacency, but regularity in 
complementarity relationships can still exist
– e.g., physical objects: collectables, semiconductors, …

• Problem:
– goods are nodes in a fully-connected graph
– edges weighted with probability that the pair of goods will appear together 

in a bid
• Procedure:

– generate a fully connected graph with random weights, CV’s
– generate sets of bids for each bidder

• bias the likelihood that a good will be added to a bid according to the weights 
of the edges it shares with goods already in the bid



Temporal Matching
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• Real-world domain:
– corresponding time slices must be secured 

on multiple resources
– e.g., aircraft take-off and landing rights

• e.g., see Rassenti et. al., 1982; Grether et. al. 1989.

• Airport map
– goods are time slots, not nodes or edges 

• thus, a random graph is not needed for scalability
– we use the map of airports for which take-off and landing rights 

are actually sold
• the four busiest airports in the USA



Airport Map
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Temporal Scheduling
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• Real-world domain: distributed job-shop scheduling with 
one resource
– e.g., see Wellman et. al., 1998.

• Bidders:
– want to use resource for a given number of time units
– one or more deadlines having different values to them

• Assumptions:
– all jobs are eligible to start in the first time-slot
– each job is allocated continuous time on resource



Legacy Distributions
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• CA algorithm researchers have compared performance 
using each other’s distributions
– e.g., Andersson et. al., Boutilier et. al., de Vries & Vohra, 

Fujishima et. al., Parkes, Sandholm, others…
– despite the drawbacks discussed earlier, these distributions will 

remain important for comparing new work to previously published 
work

• CATS has a legacy distributions section to facilitate future 
testing
– if we left something out, we’ll add it!



Conclusion
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• CATS is a test suite for combinatorial auction winner determination 
algorithms

• It represents a step beyond current CA testing techniques because 
distributions:
– model real-world problems
– model bidders explicitly
– are economically motivated

• Please see http://robotics.stanford.edu/CATS
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